Frequently Asked Questions

Geothermal heat pumps don't use large amounts of resistance heat, so your existing service may be adequate. Generally, a 200-amp service will have enough capacity, and smaller amp services may be large enough in some cases.
No. They are pollution free. The heat pump merely removes or adds heat to the water. No pollutants are added whatsoever. The only change in the water returned to the environment is a slight increase or decrease in temperature. Some people are concerned that open-loop systems contribute to the depletion of our ground water resources. This issue is not critical in some parts of North America because of abundant supplies of ground water.
One of the things that makes a heat pump so versatile is its ability to be a heating and cooling system in one. You can change from one mode to another with a simple flick of a switch on your indoor thermostat. In the cooling mode, a geothermal heat pump takes heat from indoors and transfers it to the cooler earth through either groundwater or an underground loop system.
The buried pipe, or "ground loop," is the most recent technical advancement in heat pump technology. The idea to bury pipe in the ground to gather heat energy began in the 1940s. It's only been in the last few years that new heat pump designs and improved pipe materials have been combined to make geothermal heat pumps the most efficient heating and cooling systems available.
The only acceptable method to connect pipe sections is by thermal fusion. Pipe connections are heated and fused together to form a joint stronger than the original pipe. Mechanical joining of pipe for an earth loop is never an accepted practice. The use of barbed fittings, clamps, and glue joints is certain to result in loop failure due to leaks.
Trenches are normally four to six feet deep and up to 400 feet long, depending on how many pipes are in a trench. One of the advantages of a horizontal loop system is being able to lay the trenches according to the shape of the land. As a rule of thumb, 500-600 feet of pipe is required per ton of system capacity. A well-insulated 2,000 square-foot home would need about a three-ton system with 1,500 - 1,800 feet of pipe.
Throughout the year, outdoor temperatures fluctuate with the changing seasons. However, underground temperatures do not. In fact, about four to six feet below the earth's surface, temperatures remain relatively constant year-round. A geothermal system, which consists of an indoor unit and a buried earth loop, capitalizes on these constant temperatures. In the winter, fluid circulating through the system's earth loop absorbs stored heat and carries it indoors. The indoor unit compresses the heat to a higher temperature and distributes it throughout the building. In the summer, the system reverses, pulling heat from the building, carrying through the earth loop and depositing it in the cooler earth.
Like any type of heat pump, it simply moves heat energy from one place to another. Your refrigerator works using the same scientific principle. By using the refrigeration process, geothermal heat pumps remove heat energy stored in the earth and/or the earth's groundwater and transfer it indoors.
A geothermal system is more than three times as efficient as the most efficient conventional system. Because geothermal systems do not burn combustible fuel to make heat, they provide three to four units of energy for every one unit used to power the system.
The earth has the ability to absorb and store heat energy. To use that stored energy, heat is extracted from the earth through a liquid medium (groundwater or an anti-freeze solution) and is pumped to the heat pump or heat exchanger. There, the heat is used to heat the air. In summer, the process is reversed and indoor heat is extracted from indoors and transferred to the earth through the liquid.