Frequently Asked Questions

One of the things that makes a heat pump so versatile is its ability to be a heating and cooling system in one. You can change from one mode to another with a simple flick of a switch on your indoor thermostat. In the cooling mode, a geothermal heat pump takes heat from indoors and transfers it to the cooler earth through either groundwater or an underground loop system.

The earth has the ability to absorb and store heat energy. To use that stored energy, heat is extracted from the earth through a liquid medium (groundwater or an anti-freeze solution) and is pumped to the heat pump or heat exchanger. There, the heat is used to heat the air. In summer, the process is reversed and indoor heat is extracted from indoors and transferred to the earth through the liquid.

Like any type of heat pump, it simply moves heat energy from one place to another. Your refrigerator works using the same scientific principle. By using the refrigeration process, geothermal heat pumps remove heat energy stored in the earth and/or the earth’s groundwater and transfer it indoors.

A geothermal heat pump is an electrically-powered device that uses the natural heat storage ability of the earth and/or the earth’s groundwater to heat and cool your home or business.

Not always. It may be desirable to install geothermal heat pump room units. For some small homes, one room unit would provide most of the heating and cooling needs. Ceiling cable or baseboard units could then be used for supplemental heat.

To figure this accurately, you must know how much per year you’ll save in energy costs with a geothermal system and the difference in costs between it and the alternative heating system and central air conditioner. To calculate your return on investment (payback in number of years), divide the annual savings into the additional cost. Keep in mind that energy savings is only one of the many benefits you receive from a geothermal system.

All types of heating and cooling systems have a rated efficiency. Fossil fuel furnaces have a percentage efficiency rating. Natural gas, propane and fuel oil furnaces have efficiency ratings based on laboratory conditions. To get an accurate installed efficiency rating, factors such as flue gas heat losses, cycling losses caused by oversizing, blower fan electrical usage, etc., must be included.

Geothermal heat pumps, as well as all other types of heat pumps, have efficiencies rated according to their coefficient of performance or COP. It’s a scientific way of determining how much energy the system produces versus how much it uses.

Most geothermal heat pump systems have COPs of 2.5 – 3.5. That means for every one unit of energy used to power the system, two and one-half to three and one-half units are supplied as heat. Where a fossil fuel furnace may be 50-90 percent efficient, a geothermal heat pump is about 300 percent efficient. Some geothermal heat pump manufacturers and electric utilities use computers to accurately determine the operating efficiency of a system for your home or building.

No. In fact, geothermal systems are practically maintenance free. When installed properly, the buried loop will last for generations. And the other half of the operation–the unit’s fan, compressor and pump–is housed indoors, protected from the harsh weather conditions. Usually, periodic checks and filter changes are the only required maintenance.

Because geothermal systems work with nature, not against it, they minimize the threats of acid rain, air pollution and the greenhouse effect. An environmentally friendly fluid is used in the closed, continuous loop.

A geothermal system is more than three times as efficient as the most efficient conventional system. Because geothermal systems do not burn combustible fuel to make heat, they provide three to four units of energy for every one unit used to power the system.